對于正弦信號,流過一個元器件的電流和其兩端的電壓,它們的相位不一定是相同的。這種相位差是如何產生的呢?這種知識非常重要,因為不僅放大器、自激振蕩器的反饋信號要考慮相位,而且在構造一個電路時也需要充分了解、利用或避免這種相位差。下面探討這個問題。
首先,要了解一下一些元件是如何構建出來的;其次,要了解電路元器件的基本工作原理;第三,據(jù)此找到理解相位差產生的原因;第四,利用元件的相位差特性構造一些基本電路。
一、電阻、電感、電容的誕生過程
科學家經過長期的觀察、試驗,弄清楚了一些道理,也經常出現(xiàn)了一些預料之外的偶然發(fā)現(xiàn),如倫琴發(fā)現(xiàn)X射線、居里夫人發(fā)現(xiàn)鐳的輻射現(xiàn)象,這些偶然的發(fā)現(xiàn)居然成了偉大的科學成就。電子學領域也是如此。
科學家讓電流流過導線的時候,偶然發(fā)現(xiàn)了導線發(fā)熱、電磁感應現(xiàn)象,進而發(fā)明了電阻、電感??茖W家還從摩擦起電現(xiàn)象得到靈感,發(fā)明了電容。發(fā)現(xiàn)整流現(xiàn)象而創(chuàng)造出二極管也是偶然。
二、元器件的基本工作原理
電阻——電能→熱能
電感——電能→磁場能,&磁場能→電能
電容——電勢能→電場能,&電場能→電流
由此可見,電阻、電感、電容就是能源轉換的元件。電阻、電感實現(xiàn)不同種類能量間的轉換,電容則實現(xiàn)電勢能與電場能的轉換。
1、電阻
電阻的原理是:電勢能→電流→熱能。
電源正負兩端貯藏有電勢能(正負電荷),當電勢加在電阻兩端,電荷在電勢差作用下流動——形成了電流,其流動速度遠比無電勢差時的亂序自由運動快,在電阻或導體內碰撞產生的熱量也就更多。
正電荷從電勢高的一端進入電阻,負電荷從電勢低的一端進入電阻,二者在電阻內部進行中和作用。中和作用使得正電荷數(shù)量在電阻內部呈現(xiàn)從高電勢端到低電勢端的梯度分布,負電荷數(shù)量在電阻內部呈現(xiàn)從低電勢端到高電勢端的梯度分布,從而在電阻兩端產生了電勢差電容的電感,這就是電阻的電壓降。同樣電流下,電阻對中和作用的阻力越大,其兩端電壓降也越大。
因此,用R=V/I來衡量線性電阻(電壓降與通過的電流成正比)的阻力大小。
對交流信號則表達為R=v(t)/i(t)。
注意,也有非線性電阻的概念,其非線性有電壓影響型、電流影響型等。
2、電感
電感的原理:電感——電勢能→電流→磁場能,&磁場能→電勢能(若有負載,則→電流)。
當電源電勢加在電感線圈兩端,電荷在電勢差作用下流動——形成了電流,電流轉變磁場,這稱為“充磁”過程。若被充磁電感線圈兩端的電源電勢差撤銷,且電感線圈外接有負載,則磁場能在衰減的過程中轉換為電能(如負載為電容,則為電場能;若負載為電阻,則為電流),這稱為“去磁”過程。
衡量電感線圈充磁多少的單位是磁鏈——Ψ。電流越大,電感線圈被沖磁鏈就越多,即磁鏈與電流成正比,即Ψ=L*I。對一個指定電感線圈,L是常量。
因此,用L=Ψ/I表達電感線圈的電磁轉換能力,稱L為電感量。電感量的微分表達式為:L=dΨ(t)/di(t)。
根據(jù)電磁感應原理,磁鏈變化產生感應電壓,磁鏈變化越大則感應電壓越高,即v(t)=d dΨ(t)/dt。
綜合上面兩公式得到:v(t)=L*di(t)/dt,即電感的感應電壓與電流的變化率(對時間的導數(shù))成正比電容的電感,電流變化越快則感應電壓越高。
3、電容
電容的原理:電勢能→電流→電場能,電場能→電流。
當電源電勢加在電容的兩個金屬極板上,正負電荷在電勢差作用下分別向電容兩個極板聚集而形成電場,這稱為“充電”過程。若被充電電容兩端的電源電勢差撤銷,且電容外接有負載,則電容兩端的電荷在其電勢差下向外流走,這稱為“放電”過程。電荷在向電容聚集和從電容兩個極板向外流走的過程中,電荷的流動就形成了電流。
要特別注意,電容上的電流并不是電荷真的流過電容兩個極板間的絕緣介質,而只是充電過程中電荷從外部向電容兩個極板聚集形成的流動,以及放電過程中電荷從電容兩個極板向外流走而形成的流動。也就是說,電容的電流其實是外部電流,而非內部電流,這與電阻、電感都不一樣。
下一篇:電容交流 電容對交流電的作用